傳統的示波器由于帶寬較低,無法直接捕獲高頻的射頻信號,所以在射頻微波領域的應用僅限于中頻或控制信號的測試,但隨著芯片、材料和封裝技術的發展,現代實時示波器的的帶寬、采樣率、存儲深度以及底噪聲、抖動等性能指標都有了顯著的提升。
材料技術革新對示波器帶寬的提升
以材料技術為例,磷化銦 (InP) 材料是這些年國際和國內比較熱門的材料。相對于傳統的 SiGe 材料或GaAs材料來說,磷化銦(InP)材料有更好的電性能,可以提供更高的飽和電子速度,更低的表面復合速度以及更高的電絕緣強度。在采用新型材料的過程中,還需要解決一系列的工藝問題。
特性非常好,但如果采用傳統的鋁基底時會存在熱膨脹系數不一致以及散熱效率的問題。氮化鋁(AIN)是一種新型的陶瓷基底材料,其熱性能和InP更接近且散熱特性更好,但是AlN材料成本高且硬度大,需要采用激光刻蝕加工。
借助于新材料和新技術的應用,現代實時示波器的硬件帶寬已經可以達到 60GHz以上,同時由于磷化銦(InP)材料的優異特性,使得示波器的頻響更加平坦、底噪聲更低,同時其較低的功率損耗給產品帶來更高的可靠性。
磷化銦材料除了提供優異的高帶寬性能外,其反向擊穿電壓更高,采用磷化銦材料設計的示波器可用輸入量程可達8V,相當于20dBm以上,大大提高了實用性和可靠性。
ADC 采樣技術對示波器采樣率的提升
要保證高的實時的帶寬,根據 Nyqist 定律,放大器后面ADC采樣的速率至少要達到帶寬的2倍以上(工程實現上會保證2.5倍以上)。目前市面上根本沒有這么高采樣率的單芯片的ADC,因此高帶寬的實時示波器通常會采用ADC的拼接技術。
典型的ADC拼接有兩種方式,一種是片內拼接,另一種是片外拼接。片內拼接是把多個ADC的內核集成在一個芯片內部,典型的如下圖所示的Keysight公司 S系列示波器里使用的40G/s采樣率的10bit ADC芯片,在業內第一次實現8 GHz帶寬范圍內10bit的分辨率。片內拼接的優點是各路之間的一致性和時延控制可以做地非常好,但是對于集成度和工藝的挑戰非常大。