国产裸体久永免费视频网站|午夜视频18在线观看|久久久久精品一级毛片|日本久久久久亚洲中字幕|天堂欧美中文字幕在线观看

怎樣用示波器進行射頻信號測試?
2015/7/16  15:56:36

隨著無線通信、雷達、衛(wèi)星通信、光通信等領(lǐng)域?qū)τ谛盘杺鬏斔俾驶蛘叻直媛室蟮奶嵘捎玫恼{(diào)制制式越來越復雜,信號帶寬也越來越寬。現(xiàn)代的實時示波器由于芯片和材料工藝的提升,已經(jīng)可以提供高達幾十GHz的實時測量帶寬,同時由于其時域測量的直觀性和多通道等特點,使其開始廣泛應用于超寬帶信號以及射頻信號的測量。本文介紹了高帶寬實時示波器在射頻信號測量領(lǐng)域的典型應用,以及示波器用于射頻測量時的底噪聲、無雜散動態(tài)范圍、諧波失真、絕對幅度測量精度、相位噪聲等關(guān)鍵指標。

每一位做射頻或者高速數(shù)字設計的工程師都會同時面臨頻域和時域測試的問題。比如從事高速數(shù)字電路設計的工程師通常從時域分析信號的波形和眼圖,也會借用頻域的S 參數(shù)分析傳輸通道的插入損耗,或者用相位噪聲指標來分析時鐘抖動等。對于無線通信、雷達、導航信號的分析來說,傳統(tǒng)上需要進行頻譜、雜散、臨道抑制等頻域測試,但隨著信號帶寬更寬以及脈沖調(diào)制、跳頻等技術(shù)的應用,有時采用時域的測量手段會更加有效。現(xiàn)代實時示波器的性能比起 10 多年前已經(jīng)有了大幅度的提升,可以滿足高帶寬、高精度的射頻微波信號的測試要求。除此以外,現(xiàn)代實時示波器的觸發(fā)和分析功能也變得更加豐富、操作界面更加友好、數(shù)據(jù)傳輸速率更高、多通道的支持能力也更好,使得高帶寬實時示波器可以在寬帶信號測試領(lǐng)域發(fā)揮重要的作用。

一、 什么射頻信號測試要用示波器 ?

時域測量的直觀性要進行射頻信號的時域測量的一個很大原因在于其直觀性。比如在右圖中的例子中分別顯示了 4 個不同形狀的雷達脈沖信號,信號的載波頻率和脈沖寬度差異不大,如果只在頻域進行分析,很難推斷出信號的時域形狀。由于這 4 種時域脈沖的不同形狀對于最終的卷積處理算法和系統(tǒng)性能至關(guān)重要,所以就需要在時域?qū)π盘柕拿}沖參數(shù)進行精確的測量,以保證滿足系統(tǒng)設計的要求。更高分析帶寬的要求在傳統(tǒng)的射頻微波測試中,也會使用一些帶寬不太高 (< 1 GHz)的示波器進行時域參數(shù)的測試,比如用檢波器檢出射頻信號包絡后再進行參數(shù)測試,或者對信號下變頻后再進行采集等。此時由于射頻信號已經(jīng)過濾掉,或者信號已經(jīng)變換到中頻,所以對測量要使用的示波器帶寬要求不高。

但是隨著通信技術(shù)的發(fā)展,信號的調(diào)制帶寬越來越寬。比如為了兼顧功率和距離分辨率,現(xiàn)代的雷達會在脈沖內(nèi)部采用頻率或者相位調(diào)制,典型的SAR成像雷達的調(diào)制帶寬可能會達到2GHz以上。在衛(wèi)星通信中,為了小型化和提高傳輸速率,也會避開擁擠的C波段和Ku波段,采用頻譜效率和可用帶寬更高的Ka波段,實際可用的調(diào)制帶寬可達到 3 GHz 以上甚至更高。另外示波器的幅頻特性曲線并不是從直流到額定帶寬都平坦,而是達到一定頻點后就開始明顯下降,因此選擇實時示波器時,示波器的帶寬應該大于需要的分析帶寬,至于大多少,要具體看示波器實際的頻響曲線和被測信號的要求。

在這么高的傳輸帶寬下,傳統(tǒng)的檢波或下變頻的測量手段會遇到很大的挑戰(zhàn)。由于很難從市面上尋找到一個帶寬可達到2GHz以上同時幅頻/相頻特性又非常理想的檢波器或下變頻器,所以會造成測試結(jié)果的嚴重失真。同時,如果需要對雷達脈沖或者衛(wèi)星通信信號的內(nèi)部調(diào)制信息進行解調(diào),也需要非常高的實時帶寬。傳統(tǒng)的頻譜儀測量精度和頻率范圍很高,但實時分析帶寬目前還達不到GHz以上。因此,如果要進行GHz以上寬帶信號的分析解調(diào),目前最常用的手段就是借助于寬帶示波器或者高速的數(shù)采系統(tǒng)。

二、現(xiàn)代實時示波器技術(shù)的發(fā)展

傳統(tǒng)的示波器由于帶寬較低,無法直接捕獲高頻的射頻信號,所以在射頻微波領(lǐng)域的應用僅限于中頻或控制信號的測試,但隨著芯片、材料和封裝技術(shù)的發(fā)展,現(xiàn)代實時示波器的的帶寬、采樣率、存儲深度以及底噪聲、抖動等性能指標都有了顯著的提升。

材料技術(shù)革新對示波器帶寬的提升

以材料技術(shù)為例,磷化銦 (InP) 材料是這些年國際和國內(nèi)比較熱門的材料。相對于傳統(tǒng)的 SiGe 材料或GaAs材料來說,磷化銦(InP)材料有更好的電性能,可以提供更高的飽和電子速度,更低的表面復合速度以及更高的電絕緣強度。在采用新型材料的過程中,還需要解決一系列的工藝問題。比如InP材料的高頻特性非常好,但如果采用傳統(tǒng)的鋁基底時會存在熱膨脹系數(shù)不一致以及散熱效率的問題。氮化鋁(AIN)是一種新型的陶瓷基底材料,其熱性能和InP更接近且散熱特性更好,但是AlN材料成本高且硬度大,需要采用激光刻蝕加工。借助于新材料和新技術(shù)的應用,現(xiàn)代實時示波器的硬件帶寬已經(jīng)可以達到 60GHz以上,同時由于磷化銦(InP)材料的優(yōu)異特性,使得示波器的頻響更加平坦、底噪聲更低,同時其較低的功率損耗給產(chǎn)品帶來更高的可靠性。磷化銦材料除了提供優(yōu)異的高帶寬性能外,其反向擊穿電壓更高,采用磷化銦材料設計的示波器可用輸入量程可達8V,相當于20dBm以上,大大提高了實用性和可靠性。

ADC 采樣技術(shù)對示波器采樣率的提升要保證高的實時的帶寬,根據(jù) Nyqist 定律,放大器后面ADC采樣的速率至少要達到帶寬的2倍以上(工程實現(xiàn)上會保證2.5倍以上)。目前市面上根本沒有這么高采樣率的單芯片的ADC,因此高帶寬的實時示波器通常會采用ADC的拼接技術(shù)。典型的ADC拼接有兩種方式,一種是片內(nèi)拼接,另一種是片外拼接。片內(nèi)拼接是把多個ADC的內(nèi)核集成在一個芯片內(nèi)部,在業(yè)內(nèi)第一次實現(xiàn)8 GHz帶寬范圍內(nèi)10bit的分辨率。片內(nèi)拼接的優(yōu)點是各路之間的一致性和時延控制可以做地非常好,但是對于集成度和工藝的挑戰(zhàn)非常大。

所謂片外拼接,就是在PCB板上做多片ADC芯片的拼接。典型的采用片外拼接的例子是Keysight公司的Z系列示波器,其采用8片20G/s采樣率的ADC拼接實現(xiàn)160G/s的采樣率,保證了高達63GHz的硬件帶寬。片外拼接要求各芯片間偏置和增益的一致性非常好,同時對PCB上信號和采樣時鐘的時延要精確控制。所以Z系列示波器的前端芯片里采用了先采樣保持再進行信號分配和模數(shù)轉(zhuǎn)換的技術(shù),大大提高了對于PCB走線誤差和抖動的裕量。

 

 

廣州美達克數(shù)據(jù)科技有限公司

儀器事業(yè)部:020-83709568/83802175

銷售電話:18928764315

傳真:020-83709252

地址:廣州市荔灣區(qū)東漖北路436號607房

深圳辦事處:深圳市南山區(qū)西麗麻磡南路71號C棟336

郵編:510060

Email: mitek@21cn.com

版權(quán)所有:廣州市美達克數(shù)據(jù)科技有限公司

Copyrights (c) gzmitek.com 2016. All rights reserved. 粵ICP備10214008號

熱線電話:

18928764315

我要留言

在線客服
天峻县 高平市 桃园县 银川市 滁州市 元阳县